
V6R1 Journal Recovery Enhancements,

Part 1

These improvements dispatch some key journaling conundrums

By Larry Youngren and Robert Andrews

V6R1 comes with a number of attractive journal enhancements that might help address concerns and

frustrations that you currently have or have had in the past. Let's look at a few of the enhancements,

exploring the background of the problems they address and discussing how V6R1 handles them.

A One-Way Street No Longer
Imagine that you're driving, and you come to a road sign advertising a scenic lookout. You follow the

winding, one-lane road and come to the edge of a cliff overlooking a valley. Yes, the view is magnificent,

but this isn't your final destination. You want to try other roads and view different scenery.

Unfortunately, there's no room to turn around, and worse yet, there's a sign posted threatening severe

tire damage if you try to back up. You feel trapped, don't you, and a bit misled?

That's the way some novice journal users felt in the past when they discovered that they had enabled

journaling for far more files than they had intended and then wanted to change their minds. They felt

that they had followed the signs for the correct route only to realize that they had traveled down a one-

way street.

The problem stems from the fact that, up until V6R1, you could initiate journal protection while a file

was actively being used, but until the file was closed, you could not switch directions and undo what you

had accomplished. That is, you could not end journal protection for a file while it was actively being

used. The STRJRNPF and ENDJRNPF commands simply did not behave in a symmetric fashion. What one

command let you do while a file was open, the other did not let you undo until the file was closed.

It turns out that this lack of symmetry ensnared folks who were trying to set up journaling for a high

availability (HA) product. They would rigorously assemble their list of critical database files to be

replicated, enable journal protection for each, and then turn their applications loose, only to discover

that they had put too many eggs in one basket, or worse yet, that they had errantly allowed work files to

be journaled.

As soon as these people realized that the application was struggling because of their overzealous

journaling or that the replication/replay process was falling behind, they tried to solve the problem by

placing a fork in the road. That is, they wanted to cease routing all their files to the one master journal

and instead split the traffic. In effect, they wanted to perform a U-turn and end journaling for half of

their files so that they could restart journaling for these files to a second journal, thereby getting some

performance relief via parallelism. Yet, with the application cranking away and the files already open,

the underlying ENDJRNPF command posted the "severe tire damage" sign. In effect, it said, "Sorry, not

now, try again later."

This behavior was tremendously frustrating. You could enable new journal protection for a file while it

was open but could not end journal protection until the file was closed. Hence customers who went

down this one-way street had to either end their applications abruptly at an inopportune time (so as to

reach a state that would allow them to cease journal protection) or wait until 2:00 a.m. to fix the

problem.

Starting in V6R1, even if a file is open and actively being modified, you can end journal protection for

that file. The consequence is that HA folks attempting to perform load-balancing adjustments (i.e.,

moving physical files from one journal to another) need not burn the midnight oil to make such

adjustments. We call this our "end while open" support.

Do you need some special keyword or syntax to convince i5/OS to behave in this new fashion? No! It

simply becomes the new default for the ENDJRNPF command. It's one of many enticing reasons to step

up to V6R1.

"Are We There Yet?"
Many parents have felt like tearing their hair out after the umpteenth time of hearing that persistent

question from the back seat during a cross-country trip. Yet it's natural for the young passengers to

yearn to know the status and envision the completion of the trip. Journal users are much the same,

especially remote journal users. They want to know the status of their long-distance transport of critical

cargo.

To understand their motivation, a little background is helpful. In a logical replication-driven HA

environment, a second copy of critical database files is often installed on a distant machine — your

target recovery machine. In the event of a real disaster, you'd abandon the primary/source machine and

switch users to the distant machine (out of harm's way). To trust the contents of this machine, however,

its replicated files need to be refreshed regularly. That means that the delta occurring on the production

machine needs to be captured and transported in realtime to the distant machine for replay. The

capture step is easy; you merely need to enable journal protection for your critical files on the source

machine. The transport step is more challenging. Adequate bandwidth and time are required to move

delta information across these long distances. The underlying technology to accomplish this is called

"remote journal support." Remote journal support appends groups of journal entries as bundles onto

the designated communication line and then ships them off.

Remote journaling on i5/OS comes in two varieties: synch driven and asynch driven. As the name

suggests, the synch variety is synchronous. That is, the source side waits for confirmation that the

packet placed on the wire has successfully reached the target side. The upside of this approach is that

you always know where you stand: If you're still waiting, the data hasn't yet arrived.

The downside, of course, is that waiting slows down your applications, and few businesses can afford

much idle time. Consequently, the vast majority of remote journal users have elected to configure the

asynch variety of remote journal, the benefit being good performance. Applications on the production

system barely notice that a remote journal connection is in place.

The choice of asynch transport behavior, however, prompts a nagging question: "I wonder how long it's

really taking for my changes to reach the target system?" That concern has kept some folks up at night;

they keep wanting to blurt out, "Is it there yet?"

Before V6R1, i5/OS offered no easy mechanism for garnering a reliable answer to this question, but with

V6R1, i5/OS incorporates new remote journal tracking/reporting support. The new support not only lets

you know how many bytes linger on the source side unsent (if any) but also how long they linger. Both

of these new statistics provide insight regarding what's happening in the background.

A few bytes, every now and then, lingering unsent for a tiny fraction of a second for remote journal

users isn't unheard of — particularly if the mode of transport selected was asynch. After all, that's what

asynch means. It's when large quantities of bytes regularly remain unsent and linger in this state for

extended periods that more intense investigation is called for. The real question is, "Do I truly have a

traffic jam, and if so, what's causing it?"

Every application environment is likely to experience natural peaks and valleys in database activity and

the corresponding journal traffic. The real concern is how many bytes of journal information pile up

during a burst of activity and how long they remain unsent.

If the total quantity of unsent bytes continues to increase over time and the backlog continues to grow,

you may have a communications problem worth investigating. Unsent bytes can suggest that you've

sized your communication pipe inadequately for the peak volumes that your applications tend to

generate that you have a "dirty" communications line — one experiencing an excessive quantity of

retransmits (a practice that slows down the whole remote journal transport process)

Both possibilities deserve investigation. Before V6R1, it was difficult to sense that you had a

communications problem. With the arrival of the new statistics, monitoring for that condition just got a

whole lot easier.

To see the new V6R1 remote journal transport statistics, use the WRKJRNA command and select F14 and

then option 5 on the remote journal. The Display Remote Journal Details screen (Figure 1) appears.

Page forward to see the statistics values, as Figure 2 shows.

Pay particular attention to the Maximum entries behind field as well as the Hundredths of seconds

behind field. The larger the values you observe in these fields, the more your source side is struggling to

keep up. Also keep your eye on the Super bundle count field, which tracks the number of times the

underlying i5/OS software on the source side sensed that new bundles of journal entries were arriving

as a burst and resulted in the operating system kicking into "super bundling mode" — a style of behavior

under which the OS strings together consecutive groups of journal entries and sends them across the

wire as a singular "super" bundle.

Having a low super bundle count suggests that your communication pipe is adequately sized and has

plenty of room to spare. Seeing a higher value here doesn't mean trouble — yet. But it does suggest that

you should keep an eye on the remote journal traffic to see whether it rises in the future to a point

where bottlenecks begin to occur.

No Garbling Allowed
You may have noticed the next-to-last field on the screen in Figure 1: Validity checking. That is a new

V6R1 feature added to the remote journal support.

If you ever played the game of "telephone" as a kid, you probably remember how you'd line up a set of

classmates, whisper a phrase into the ear of the first kid in line, and ask him or her to pass it along. The

last classmate was asked to state out loud the message. You probably howled with laughter as you

discovered how your message had been garbled by the time it reached the end of the line.

Communication lines used for remote journal transmission, especially those that involve a configuration

with lots of intermediate switches, can experience the same phenomenon: What went in clean can

occasionally come out slightly garbled. Detecting that some transformation of the data has occurred

during transmission was often a hit or miss proposition in the past. For short distances, ultraclean lines,

and few physical switches, the problem rarely surfaced in remote journal environments. But for a few

businesses, especially those that had recently modified their communication gear, we heard occasional

stories of folks who were convinced that some garbling must have occurred.

The good news before V6R1 was that the remote journal technology itself surrounded each set of

journal entries and database row images sent down the communication wire with a wrapper. This

wrapper included crucial information that the target end of the remote journal technology itself needed

in order to determine what it had received and where to put the images that had arrived. If the garbling

affected the wrapper (the so-called metadata), the resulting lengths and locations were often downright

ludicrous, so the remote journal connection was automatically terminated until the problem was fixed.

Hence, the presence of such garbling might get detected — if the garbled items were ones that i5/OS

itself cared about. However, if the potential garbling affected a row image from a database file, it was

far less likely in the past that the remote journal transport layer could detect the side effect, and the

garbled consequence probably surfaced days later when your application attempted to display the

database row on the target side. That was an unfortunate but infrequent occurrence.

What does all this have to do with V6R1? V6R1 provides a new optional remote journal option — an

extra validation step. If you make this choice, every set of journal entries sent down the wire carries an

extra cyclical redundancy check (CRC) value, substantially increasing the likelihood that garbling will be

detected promptly.

Should every remote journal configuration enable the new validation behavior? Probably not. This new

behavior is optional on purpose. It mandates that extra steps be performed on the source machine in

order to generate the CRC value each time a new bundle of journal entries is sent, and it requires that

corresponding steps be performed on the target side to generate a CRC value anew to compare with the

one sent from the source. If the two CRC values agree, no garbling has occurred. Producing these extra

CRC values time after time consumes CPU cycles. As a rough rule of thumb, you can assume that using

the validation option probably adds an extra 3 to 5 percent of overhead on the source side and an

equivalent amount on the target side.

The overhead isn't inconsequential. It's an overhead you probably want to incur during a shakedown

phase if you suspect a dirty line or have recently modified your communication configuration and,

hence, want some assurances that no hiccups are occurring. In fact, many shops will probably elect to

toggle the CRC on and off as needed.

The syntax for managing this new setting is on the command CHGRMTJRN. You enable the validity

checking CRC behavior with the VLDCHK keyword, as shown in this example:

CHGRMTJRN RDB(MYRDBNAME) SRCJRN(MYJRN) VLDCHK(*ENABLED)

Alternate Routes
In the summer of 1959, Larry's family decided to take a road trip from Illinois to Alaska and back. Larry's

dad thought that it would be fun to travel 10,000 miles in three weeks, heat stew on the manifold of a

1952 Nash, pitch a tent in the rain, and travel the Alcan Highway (which at the time was not much more

than a gravel road). Two punctured gas tanks and 11 flat tires later, they completed the trip and had

helped Alaska celebrate its statehood.

They also had one of the scariest experiences of Larry's life. Somewhere in Canada, they came to a place

where weeks earlier a high bridge had spanned the Peace River. Towering nearly 14 stories high, the

bridge let cars pass from one side of the river to the other. However, days before they reached that

gorge, a heavy rain had swollen the river and washed out the automobile bridge. For some strange

reason, downstream a bit, it had not washed out the railroad bridge. White knuckled, following the

directions of flagmen posted at both ends of the bridge, Larry's dad drove across that railroad bridge —

a bridge that, as Larry recalls, had no sides and must have been three or four football fields long!

Frightening as it was, at least there was an alternate route to cross the river. Without that railroad

bridge, the trip would have ended abruptly. It's nice to have a second route when your first one fails.

What does this story have to do with V6R1? It turns out that the communication line between your

source and target machine is the Achilles heel of your HA strategy. When it's down, your target machine

isn't staying in lock step with what's happening on the production side. You're at risk. That's the reason

that, beginning in V6R1, your remote journal connection is no longer restricted to using only one line at

a time. In fact, if you have them, you can configure up to four separate communication lines all servicing

the same remote journal connection. This setup adds robustness to your logical replication/remote

journal HA strategy. If one line goes down or turns sluggish, the remote journal support can continue

using the remaining lines.

To advise the remote journal support that it can use more than a single line, you tie into the same

multiline Data Port services software that the i5/OS clustering support employs. To do so, you need to

tell i5/OS that it can think of the source and target machine at the two ends of the wire as a cluster of

machines. Having established this so-called cluster, you merely identify the cluster as well as the specific

IP links on the CHGRMTJRN command. Let's walk though an example to help illustrate the concept.

Let's say that you want to establish a remote journal connection between a pair of machines, and you

also want to provide secondary IP paths. First, you create a local journal on the source side and then add

a matching remote journal, identifying the target machine housing it by supplying a relational database

(RDB) name.

After the remote journal connection is established, you use the CHGRMTJRN command to activate it. In

V6R1, this command is enhanced so that you can specify that the remote journal traffic should use the

underlying Data Port transmission software. To help the remote journal express its desire to tie into the

Data Port transmission layer of microcode, you need to define a cluster and all nodes involved.

A word of caution: If there are only two machines, life is simple. If there are more than two machines,

keep in mind that a system can be a member of only one cluster. This limitation means, for example,

that if you have three systems set up such that both systems A and B do remote journaling to a common

backup system C, and you want to use Data Port services, all three systems need to be defined as

members of a single shared cluster. To create such a cluster and define the nodes therein, you can use

Navigator for i5/OS or the CRTCLU command, naming the cluster, the nodes, and the IP addresses as

Figure 3 shows.

Although you eventually might want to establish multiple paths between system A and system B, you

must take one step at a time. The CRTCLU command asks you to provide only the first IP address. This

first IP address establishes the Data Port link, which you can then use to capitalize on the other lines (up

to four). After the cluster and a single end point on each node have been defined, it's time to activate

the cluster nodes. Each node needs to be activated with Navigator or the STRCLUNOD command. These

active nodes then can respond to the remote journal request, which we show next, and which wants to

add more paths.

For our example, we have two systems, each with four network interface cards (NICs). The first system is

on the 10.0.1.X network, and the second is on the 10.0.2.X network. Let's assume that the adapter's IP

addresses end in 1, 2, 3 and 4 for our four lines, respectively. We create a cluster called MYCLUSTER with

two nodes, NODE1 and NODE2. The commands look like this:

CRTCLU CLUSTER(MYCLUSTER) NODE((NODE1 ('10.0.1.1')) (NODE2 ('10.0.2.1')))

Remember, at this point we specify only one end point on each node. We then have to start each node

in the cluster:

STRCLUNOD CLUSTER(MYCLUSTER) NODE(NODE1)

STRCLUNOD CLUSTER(MYCLUSTER) NODE(NODE2)

OK, the cluster activation is done. Now we turn our attention back to the remote journal itself. After

clustering is started and the matching nodes are active, we can start the remote journal connection and

define all the end points for Data Port services. We do this with the CHGRMTJRN command, as Figure 4

shows.

To activate remote journal using this new support, the command looks like this:

CHGRMTJRN RDB(BACKUPRDB) SRCJRN(MYJRNLIB/MYJRN) DTAPORTSRV(NODE2 ('10.0.2.1' '10.0.2.2'

'10.0.2.3' '10.0.2.4'))

Notice the new DTAPORTSRV keyword for V6R1. It's here that we specify the target node serving as a

destination for our remote journal traffic as well as all four IP addresses of the second node.

Here are a couple of caveats:

• If we IPL the machine, the connections are dropped, and we must issue the CHGRMTJRN anew.

• If we IPL either system, the cluster nodes go inactive, and we must restart the nodes.

Also note that some of the Data Port options require additional software: 5761SS1 option 41 HA

Switchable Resources and/or the 5761HAS System i High Availability Solutions Manager LPP. Both of

these are additional, chargeable features. Alternatively, you can use the Example Tools Library (product

option 7 for i5/OS — 5761SS1) to accomplish the same thing.

A Feast for Journal Users
Whether it's more even-handed journal treatment, better monitoring for potential traffic jams, timely

detection and enhanced prevention for garbling, or merely increased bandwidth for remote journal

needs, V6R1 has handy new features that will make some journal users salivate. Look for Part 2 of this

article in an upcoming issue, when we'll continue our examination of V6R1 journal enhancements and

show you how to exercise greater control over background tasks performing housekeeping chores on

behalf of your journal environment, simplify data recovery, ease the burden of assuring that no file gets

overlooked, and peek into the hidden journaling happening behind the scenes.

After more than 30 years of experience leading the design efforts for System i journal support at IBM,

Larry Youngren recently retired from IBM and now lectures and consults on high availability issues. You

can e-mail Larry at journal_guru@yahoo.com.

Robert Andrews is an advisory software engineer at IBM and focuses on database and journaling

technologies on the System i. You can e-mail Robert at robert.andrews@us.ibm.com.

