
Data Orchestration

V5R3 enhancements improve DB2 UDB's ease of use

By Robert Andrews

Do you want to encrypt DB2* Universal Database* (UDB) data on your iSeries* server? Have you ever

wished data could be auto-incremented in a table? Have you ever wanted to reorganize a table while

your production applications are still active? Do you desire easier integration of ILE RPG and SQL? IBM*

DB2 UDB for iSeries V5R3 is helping make these dreams come true. V5R3 offers several enhancements

requested by users that help simplify the usage and programming experience. This article details these

enhancements and more.

Sequence Objects
New SQL objects, called sequence objects, have been added that allow numeric values to be

automatically generated. While this is similar to identity columns introduced in V5R2, sequence objects

can be shared across multiple SQL objects. They can be defined for any numeric data type that has a

scale of zero, including user-defined types. On the i5/OS* side, they appear as data area objects.

However, they have a signature attached that invalidates the sequence object if its altered from a non-

SQL interface.

When defining a sequence object, specify the data type, starting value, increment value, minimum

value, maximum value, cycling, caching and ordering. The starting value can be positive or negative. The

incremental value can be any whole number to tell how many steps from the current to the next value.

If this value is zero, a constant value is generated. If the value is negative, the sequence goes in

descending, rather than ascending, order. When the sequence object hits the minimum or maximum

value, it either cycles or stops generating values depending on how its set up.

To improve performance, an application may cache a set of values to be used. While this may enhance

performance, it may also cause the sequence values to not be generated in order. In these cases,

ordering can be forced. Assume we have a sequence with a cache of 20 with ordering, a starting value of

1 and an increase value of 1. If two jobs are going to be used to insert records-job A inserting a row,

then job B, and job A again-the values would be 1, 2 and 3. However, if the same sequence object was

created without ordering, the values would be 1, 21 and 2.

Sequence objects use the NEXT VALUE clause. For example, assuming a sequence S1 exists, to insert the

next value into the table, use:

INSERT INTO TABLE1(NUM1, CHAR1) VALUES(NEXT VALUE FOR S1, Text value)

If NEXT VALUE is used multiple times in the same SQL statement, the same value will be returned for

each reference to NEXT VALUE in the statement. The value last generated within that application

process can be retrieved with the PREVIOUS VALUE clause. This can be useful when multiple tables must

be updated as the first table generates the NEXT VALUE, and then the additional tables use the

PREVIOUS VALUE clause. All tables then have the same value. Sequence objects can be used to generate

non-numeric values by concatenating the sequence value with a character such as:

CONCAT(N, CAST(NEXT VALUE FOR S1 AS CHAR(4)))

Sequence objects can also be altered, dropped, labeled, commented and authority granted. When

altering a sequence, almost all attributes can be changed including data type, next value, increment,

minimum and maximum values. Cycling, caching and ordering can be altered as well. When a sequence

is altered, all currently cached values for applications are discarded.

SQL Column Encryption
With increasing data-privacy concerns, customers are more interested in encrypting the data on their

systems. DB2 UDB V5R3 provides built-in encrypt and decrypt SQL functions so native programs arent

able to use the encrypted data without using embedded SQL or other SQL items (e.g., SQL views with

stored passwords or SQL triggers) to handle the encryption and decryption.

Also with V5R3, encryption is handled at the field level. This means that the encryption and decryption

occur when a particular field of a particular row is accessed. Theres no way at the file level to mark the

table as "encrypted." This means that each field of each row can have its own password, which must be

used to encrypt and decrypt the data.

The SQL scalar function, ENCRYPT_RC2, is used for encryption via the RC2 encryption algorithm. This

function takes three parameters-the data to encrypt, the password and an optional hint. If the data

value "123-45-6789" was encrypted with a password of "IBM" and a hint into a field called "SSN", the

statement would look like:

INSERT INTO TABLE1(SSN) VALUES(ENCRYPT_RC2(123-45-6789, IBM, My Company Name))

To encrypt data, the fields length is longer than plain-text length as it contains an encryption header as

well as the encrypted data. Assuming a single-byte character set and no binary large objects (BLOBs) are

involved, the length is equal to the length of the plain-text data, plus the number of bytes to the next 8-

byte boundary of the plain-text data, plus 8 bytes for the encryption header. So, to encrypt a string of

"ABCDEF," the length of the result is 6 (the length of the plain text) plus 2 (number of bytes to the next

8-byte boundary) plus 8 (encryption header). So "ABCDEF" would need a 16-byte field once encrypted. If

a hint is provided, an additional 32 bytes are required regardless of the hints length. For calculations

involving BLOBs or double-byte character sets, see the SQL Reference in the iSeries Information Center.

Fields containing encrypted data must be declared as CHAR(n) FOR BIT DATA. If not, the data may be

promoted to for bit data, which allows the encryption to work but not the decryption since the field type

isn’t for bit data. To decrypt data, the result data type determines what function is used. The decrypt

functions are DECRYPT_CHAR, DECRYPT_BINARY, DECRYPT_BIT and DECRYPT_DB (double byte). The

function takes three parameters-the encrypted data, the password and, optionally, what coded

character set identifier the data should be returned as. To get the aforementioned encrypt example

back to plain text, use the statement:

SELECT DECRYPT_CHAR(SSN, IBM) FROM TABLE1

The results length equals the length of the original, plain-text data. Keep in mind that each field of each

row can have its own password, so selecting all rows from the table may not work. Hence, the WHERE

clause must be used to limit the rows selected for decryption to those that use the password provided in

that statement.

Finally, the GETHINT function takes in the encrypted data and returns the hint stored with that field.

Again, using the aforementioned example would return "My Company Name":

SELECT GETHINT(SSN) FROM TABLE1

When using Distributed Relational Database Architecture* to access encrypted data from a remote

system, keep in mind that the password and returned data are sent as plain text. To help ensure

security, IPSec or SSL should be used to encrypt communications between the two systems. For

additional details and examples, see, "The Next Step in Security".

Parallel and Online Reorganize
To improve file efficiency, deleted records can be compressed by reorganizing the physical file member.

Prior to V5R3, the file had to be taken offline to be reorganized and no other process could access the

file during that time. A duplicate copy was created that required twice the amount of disk space. Logical

files were then rebuilt. During this entire process, the file was unavailable.

With V5R3, online or cancelable reorganize was introduced. This allows a file to be reorganized while its

being used. The file is journaled while the reorganize occurs and rows are moved one at a time. While

this requires space for journal entries, the journal receiver threshold controls the disk usage with

system-managed journals and by deleting receivers. The logical files over this physical file can be

maintained with each row move or rebuilt at the end. Since the process involves moving records at the

row level, if the DB2 Symmetric Multiprocessing (SMP) option is installed, the reorganize can be done in

parallel. The access level that other users have to the file while its being reorganized can also be set by

the reorganize command. If a reorganize is paused or suspended and then later resumed, it may pick up

from where it left off, or, if significant changes were made to the file, it may start over again. For details

on this feature, see, "DB2 UDB Gets Organized."

Journaling
Journaling goes hand-in-hand with DB2 for iSeries. Journaling with V5R3 features a few enhancements:

• A new receiver size option, *MAXOPT3, allows the sequence number of journal entries to go to

18,446,744,073,709,551,600.

• Several defaults have also been changed. While they wont affect journals that are migrated to

V5R3, they will affect newly created journals. A default threshold of 1.5 GB instead of *NONE is

set for journal receivers, and the journals are set to system-managed receivers instead of user-

managed.

• The new save while active with partial transactions allows saves to be done mid-transaction

without requiring the application to get to a commit boundary to save. For details on this new

functionality, see the Backup and Recovery section in the iSeries Information Center.

• Remote journaling now has the capability to detect when its falling behind in sending entries to

a remote system. Multiple rows can be bundled and broken on non-record boundaries

increasing communication efficiency, which is known as super bundling. But theres no external

screen that shows if the regular or super-bundling mode is currently being used. (Note: This is

different from *SYNCPEND or *ASYNCPEND, which indicates catch-up mode is active. Catch-up

mode is used when a remote journal is first activated to move the set of receivers from the

source to the remote system.)

SQL Functions

Several enhancements to SQL functions and statements were also made at V5R3:

• When joining two tables that use common column names that must be matched, instead of

using:

FROM T1 JOIN T2 ON T1.C1 = T2.C1 AND T1.C2 = T2.C2 < /SPAN >

the USING keyword can be substituted:

FROM T1 JOIN T2 USING (C1, C2)

• Similar to the UNION clause, the new INTERSECT statement returns all rows that are in both of

the tables intersected together. In contrast to INTERSECT, the EXCEPT statement returns all rows

that are in the first result set but not in the second.

• A new RIGHT function works the same as the LEFT function but returns data from the right end

instead of the left. Using RIGHT(ABCXYZ, 3) would return "XYZ."

• Using the REPLACE function, a string is searched for and replaced with another string.

• Using the INSERT function, an offset in the string is replaced with another. For example:

REPLACE(ABCXYZ, ABC, DEF)

returns "DEFXYZ", and

INSERT(ABCXYZ, 1, 3, DEF)

also returns "DEFXYZ"-the first searching for "ABC," and the second replacing characters starting

at offset one for three characters.

• The REPEAT function repeats a string for a set number of times to produce one long string:

REPEAT(ABC, 3) returns "ABCABCABC."

• Multiple rows can now be added with one INSERT statement. For example, if TABLE1 had a

numeric and character string, such as:

INSERT INTO TABLE1 VALUES (1, ABC), (2, DEF)

it would add two rows, one with "1" and "ABC" and the other with "2" and "DEF." Now this

syntax also allows SQL stored procedures to do blocked inserts.

• External SQL stored procedures point to a high-level language (HLL) program to run. Starting in

V5R3, stored procedures can point to an entry point in a service program. When creating the

stored procedure, the external name parameter would be LIB1/SRVPGM1(PGM1) where

"SRVPGM1" is the service program and "PGM1" is its entry point. (Note: The entry point is case-

sensitive.)

SQL ILE RPG Precompiler Enhancements
While ILE RPG programmers have wanted to embrace SQL in ILE RPG, many have felt limited by the

precompilers restrictions. In past releases, the SQL ILE RPG Precompiler, which allows SQL statements to

be embedded directly into an ILE RPG program, allowed only a small subset of ILE RPG Compiler

functions. In V5R3, the precompiler was enhanced to include many features that native ILE RPG

programmers have been waiting for.

The first of these enhancements includes being able to use qualified subfields. The precompiler scans for

the QUALIFIED keyword that allows the same subfield name in multiple data structures. In addition to

qualified data structures, array data structures can now be used. Array data structures are declared with

the DIM(n) keyword. At this time, array data structures can only be used for blocked fetches or blocked

inserts since array-index references still arent allowed. If the data structure isnt an array, the LIKEDS

keyword can be used to define one data structure based on a previously defined one. Likewise, the

LIKEREC keyword defines a data structure based on an externally described file format. The precompiler

doesnt support the optional second parameter of LIKEREC.

The last major enhancement is the preprocessor option. The precompiler calls the preprocessor to

expand the source and allow the use of compiler directives. In the past, only single-level /COPY

statements were processed. Now, depending on the value set for the RPG preprocessor options

(RPGPPOPT) parameter, several compiler directives can be used-/IF, /ELSE, /ELSEIF, /ENDIF, /EOF,

/DEFINE and /UNDEFINE.

To not use the RPG preprocessor, the value can be set to *NONE. The precompiler still picks up and uses

single-level /COPY statements. A value of *LVL1 calls the RPG preprocessor and expands all /COPY

commands, including nested /COPY statements and conditional-compile directives. In addition to the

functions in *LVL1, *LVL2 expands /INCLUDE directives. Using *LVL1 or *LVL2 increases the possibility

that the expanded source generated by the RPG preprocessor will become very large and a resource

limit may be reached, depending on the nesting levels and expansion performed. If a limit is reached,

the source must be broken into smaller pieces or the preprocessor cant be used.

Offering Easier Data Access
Overall, DB2 UDB for iSeries offers many enhancements in usage and programming methods to allow

easier data access. Sequence objects provide more flexibility and expand on identity columns. Data

encryption makes sensitive information more secure. Additional SQL functions provide more data

selection and string manipulation. The ILE RPG precompiler and preprocessor options allow for easier

integration of ILE RPG and SQL. For details on the exact parameters and values to be used in these

commands, see the DB2 UDB for iSeries SQL Reference, SQL Programming, Embedded SQL

Programming, and the Backup and Recovery manuals, which are available in the iSeries Information

Center.

